Comparing Two Dependent Means

Speaking Couples

Listed below are the numbers of words spoken in a day by each member of six different couples. The data are randomly selected from the first two columns in Data Set 17 from Appendix B. Use a 0.05 significance level to test the claim that among couples, males speak more words in a day than females.

Males:	5,638	21,319	17,572	26,429	46,978	25,835
Females:	5,198	11,661	19,624	13,397	31,553	18,667

 $\alpha = 0.05$

The first group shown is Males, so we designate that Group 1 and Females will be Group 2. We are testing that males in couples speak more than females, or:

 $\begin{array}{l} \text{Group 1} > \text{Group 2} \\ \Rightarrow \text{ Group 1} - \text{Group 2} > 0 \\ \Rightarrow \qquad \mu_{diff} > 0 \end{array}$

And so our hypothesis test is:

 $\begin{aligned} H_0 &= \mu_{diff} \leq 0 \\ H_A &= \mu_{diff} > 0 \end{aligned}$

This problem is testing the difference between two dependent means. With dependent data, we must use $\underline{T Tests}$ for this problem.

Calculating Critical Value

Push 2ND, then VARS. Select invT(and hit ENTER.

Next, we need to input two numbers into this function. First is the area from the left leading up to our rejection region (0.95). The last number is the degrees of freedom ($n_2 = 6$, df = n - 1 = 5). Then hit **ENTER**. The number below is our critical value.

Calculating Test Statistic and P Value

Push **STAT**, then select **Edit** and hit **ENTER**. Enter the number for Group 1 into L1 and Group 2 into L2.

Press the right arrow key and then the up arrow key until you've highlighted the L3 title. Then push 2ND, then 1, and then – (the minus button). Then push 2ND, then 2, and hit ENTER. L3 now contains the differences between Group 1 and Group 2.

L1	L2	161 3		
5638 21319 17572 26429 46978 25835	5198 11661 19624 13397 31553 18667			

L1	L2	L3	3	
5638 21319 17572 26429 46978 25835	5198 11661 19624 13397 31553 18667	440 9658 -2052 13032 15425 7168		
L3(7) =				

Push STAT, then select TESTS in the upper right hand corner. Select T-Test... and hit ENTER.

First, for Input, select **Data**. Next state what μ_0 is ($H_A = \mu_{diff} > 0$, so $\mu_0 = 0$). Next, list where our data is located (L3) and choose our alternative hypothesis ($H_A = \mu_{diff} > \mu_0$). Now select **Calculate** and hit **ENTER**. The **t** = is our test statistic and the **p** = is our p value.

Calculating a Confidence Interval

We refer to the following table to choose our confidence level. We have a one-tailed test and $\alpha = 0.05$, so we will use a confidence level of 90%.

	α	Two-Tailed Test	One-Tailed Test
Significance	0.01	99%	98%
Level for	0.05	95%	90%
Hypothesis Test	0.10	90%	80%

Push STAT, then select TESTS in the upper right hand corner. Select TInterval... and hit ENTER.

ALC TEST TESTS 13 20 1 tor

First, for Input, select **Stats**. Next, list where our data is located (**L3**) and choose our confidence level (90%). Now select **Calculate** and hit **ENTER**. The top numbers in parentheses is our confidence interval.

